Showing posts with label visual memory. Show all posts
Showing posts with label visual memory. Show all posts

Monday, June 20, 2022

Deep Learning Practice Resolves Retention Issues

 This article expands on my recent January “Content Timing Process Realized” and March 2022 blogs on “Deep Learning Applied” findings, to elucidate on how learning retention can be actualized through applied parallel thought (Erland, J. K. February 4, 1986); Rumelhart. D. E. McClelland, J. 1986), and neurological codes, (Hinton, G. 2006). Looping, puppetry dramatization becomes a key deep memory element for re-training career and academic skill retention (Erland, J. K. 1980).

 A highly skilled workforce is a requirement in today’s demanding technological economy. Business and industry now grapple how to create upskilling training that retains and advances eager workers in need of procedural learning. Many have ingrained lack of focus creating erratic behavior and follow-through with written and oral directions that underlie all procedural details.

 Working memory becomes the impetus for activating layered segmented chunks, rotating in spans or units, known as “Deep Learning”, earlier referenced as “Contrapuntal, Sweeping, or Parallel Thinking”© (Erland, Janis L., 1986) in my early writings. This innovative Deep Learning, cognitive process is a vitally needed retention component for up-skilling and re-skilling training. Deep Learning offers a critical component for planning, making coherent decisions, and expressing newly learned skills.

 As a conduit to create the procedural system outcome, are “Deep Learning” practice sessions. Art, science, and computational skills are provided by innovative ventriloquist, prosody speaking, puppets. The participant assumes the role of detecting new patterns and systems.

 The Bridge to Achievement’s (BTA) mental agility, a cognitive, span-expansion coding process, has been documented through serial published, juried, award-winning, longitudinal experimental research for academic and career achievement. Outstanding outcomes were documented in math, reading and language skills.

Additionally, the extensive longitudinal data research revealed new mental strength will sustain the enhanced skills over time, when applied consistently. The BTA Deep Learning practice becomes a valued supplemental front engine for all reading, math, and language programs, or used independently as a “stand alone, mental jump-starter”. Subsequently, the intense, Deep Learning rehearsal process creates a new, higher functioning, and more optimistic, empowered individual.

 The unique BTA content elements cement learning retention in multiple ways:

 -     Brief, timed, self-paced lessons. Mental focus maintained through ongoing fixed, focal interest.

-     Original, one-of-a-kind, phonetic and coding practice lessons.

      -     Lessons increase gradually in complexity with locked, timing, pacing.

      -     Fourteen to thirty minute short, segmented, daily lessons offer less time involvement.

      -     Whole-brain, peers and puppets, modeling rehearsal regimen (Erland, J. K.  1980).

      -     Authentic, Hollywood Golden Age ventriloquist puppets applied as adjacent role models.

      -     Thirteen choreographed character positions rotate in loops over 800 unique segments.

      -     Solid, verified, data-based published results with multiple 3rd party reviewers (Erland, J. K. Fall 2000).

_____________________ 

Erland, J. K. (1980). Vicarious modeling using peers and puppets with learning disabled adolescents in following oral directions. The University of Kansas, Lawrence, Kansas.

Erland, Janis L. (February 4, 1986; copyright TXu 225 862). Contrapuntal Thinking and Definition of Sweeping Thoughts.

Erland J. K. (c 1989), Hierarchy of Thinking. Mem-ExSpan, Inc.

Erland, J. K. (Fall, 1998). Cognitive skills and accelerated learning memory training using interactive media improves academic performance in reading and math.  Journal of Accelerative Learning and Teaching23, (3 & 4), 3-57.

Erland, J. K. (Fall 2000). Brain-Based Longitudinal Study Reveals Subsequent High Academic Achievement Gain for Low-Achieving, Low Cognitive Skills, Fourth Grade Students. Journal of Accelerated Learning and Teaching. 25, (3&4) pp.5-48. ERIC ED # 453-553. & # CS 510 558. https://Books.Google.com/jankuypererland page 41.

Erland, J. K. (© 2008). Downloadable, unpublished report. Five Generations, 27-years of iterative Brain-Based Accelerative Learning Experimentation Demonstrate Cognitive Skill Improvement Enhances Academic and Career Goals. (https://memspan/jalt).

Hinton, G. (2006). Deep Learning and the recipient of the 2001 Rumelhart Deep Learning Prize.

Rumelhart, D. E., McClelland, J. and the PDP Research Group. (1986).  Parallel distributed processing:  Explorations in the micro structure of cognition. Cambridge, MA: MIT Press.      

 

Sunday, January 20, 2013

Brain Gaming Merit: Finding Transfer


The topic of this blog is determining the value of brain games, in follow-up of Ted C. Fishman's May 9, 2012 USA Today article "Gaming Our Brains: Do online mind exercises really improve our mental processing? As the article indicated, the internet is being flooded with a variety of visual memory games and is a $300 million a year business with millions of hours spent playing these exercises.

The concern is that many games are random, non-progressive visual memory for detail exercises that simply measure "right and wrong" speed recognition answers. which can be discouraging to the learner, if not completely beneficial.

Although our cognitive skills have been shown to diminish as we age. i.e. auditory memory (listening) declines at age 35, but varies greatly depending upon the actual task coordinated with the person's innate ability (Craik & Grady, 2000. Changes in Memory Processing with Age). And, there is a high correlation to our sensory acuity of visual, hearing, gait, and balance (p.2). Additionally, Many have cognitive processing discrepancies that they compensate for on a daily basis, and can be improved through the correct intervention.

This indicates that we all would benefit from brain exercise, but what programs will be beneficial specifically to our own personal needs? Subsequently, are short, random, visual brain exercises worth our time, effort, and money? Although the exercises do no harm, how will we know which programs will work most effectively for us?

The key to these exercises is whether they can create "clinical transfer" to every day life work and learning activities. The Mem-ExSpan thirty years of independent research has documented cognitive skills-memory transfer (five published, juried, award winning, longitudinal reports) with remarkable changes in academic and work proficiency. This work is at least a start in the vast research to be continued by many around the globe.

The program that has shown work and academic proficient transfer is called, "The Bridge to Achievement". (The BTA) The question is - how does the BTA differ from other random exercise games offered by competing companies?

My former blog commented on how we each have our own brain map of cognitive skills that make up Intelligent Quotients (IQs). This topic has been explored for decades by various psychologists and scientists evaluating the role that memory plays with daily functioning.

The BTA offers more than mere self-taught memory games, and works as a prescriptive system to strengthen visual AND auditory memory segments and sequencing in gradient, rehearsed steps. Craik and Lockhart"s Hierarchy work (1972) demonstrated the various incremental levels of memory absorption, and the influencing factors create "cementing" to our minds. The BTA steps encompass rapid right-and-left-brain cognitive shifts applying tonal patterning through musical phrasing. Subsequently, synapses strengthen.

Few specialists have conducted in-depth, standardized cognitive skills diagnostics to the extent of examination that I have completed, applying ten standardized cognitive skills test batteries individually and group pre- and post-test (6 hrs. intensive measurement per student), and evaluating them with schools' yearly standardized assessment batteries. Only through this type of correlated, tracked assessment can future change processes and trending be determined and predicted.

I was fortunate that I tested individuals in small town, small group settings, where the schools had students that remained and moved lock-step through the grades. Otherwise, they could not be tracked longitudinally.

Having our own personalized cognitive skills tested has high personal value and will direct to your training options. Yet, psychological assessments are expensive and hard to come by, as they must be conducted by a certified psychologist/clinician/diagnostician. Whether you utilize "indicator" free tests, or pay for a thorough psychologist's evaluation, it is helpful to know your visual and listening area strengths and weaknesses, as this information will be key in determining your required specific intervention, and that you are not wasting your time working on the wrong cognitive area.

It can not be deduced that ANY game will produce desired results, or are similar to the BTA program. Will tracking the random answers of millions playing games produce significant clinical trial information? This is unlikely, because each person has their own cognitive brain map, which processes uniquely to themselves, and gaming tracking systems will not measure specific cognitive improvement in directed areas.

Only by thoroughly assessing each of the millions through prescriptive cognitive skills diagnostics, will it be determined the effectiveness of random brain games. Longitudinal assessment through learning management systems (LMS), will be unlikely, as people will not commit to independent, self-instruction on a continuous basis, nor can cognitive assessment be administered effectively online. Subsequently, it will be unlikely that the games played will have futuristic measurement capabilities of seeing if the memory for visual detail exercises "transfer" to higher work and academic learning proficiency.

Yet, we can not overlook the possibility that the games are fun to play.



Wednesday, July 22, 2009

"Can Puppetry With Musical Choral Speech Serve as a Tool to Enhance Memory and Intelligence?"

Today, there are many brain exercise programs, and most expect the client to have the motivation and interest to stay with a new, often tedious program. Many are random exercises without a specific goal in mind, and are no more than mere visual memory improvement of some sort. The various types of memory are not completely pre tested or delineated, and if they do, they are with the pretests primarily visual in nature and deliberately made difficult so the applicant performs poorly.

What is obviously missing from this paradigm is the crucial "listening-auditory memory" facet. Researchers have long written that auditory memory must couple with visual memory for comprehension to ensue. But how to teach auditory memory and the various subcategories of it?

My program has always used recognized nationally standardized cognitive skills tests. We did pretests and posttests to see and compare the improvement after twenty-four hours of intensive cognitive skills brain-skill practice. The results always showed improvement, and yet, every person's profile was different; pre- to posttest. That was most interesting to me and the client, and remains to be so, even today.

None of us have perfect profiles, although we would like to think that we do have them.

To teach rapid auditory-visual memory, and to make the training palatable and exciting, we used a family of ventriloquist puppets, speaking in tonal sequences.

Puppet characters have the following qualities: 1) they offer a non-threatening, stress free presence. The student remains in an abstract "one-up" position. Puppets do not challenge or intimidate you.

2) Their messages are rapidly understood. For example, they are used in political cartoons and comic strips.

3) With the recent surge of ventriloquist puppets as entertainment (America's Got Talent), they are now, and have been accepted for a long time, as a sophisticated arts medium for adults (remember Edgar Bergen and Charlie McCarthy? and puppetry in the Czech Republic and India?).

Now, we can learn from them, too. They can improve our cognitive skills, which include visual and auditory memories. And, if puppet characters do give us "guff," we really do not mind!