Thursday, February 10, 2011

Jan's Brainy Insight: Blended e-Learning to the Rescue - 6 Available Models

Jan's Brainy Insight: Blended e-Learning to the Rescue - 6 Available Models: ""

Wednesday, February 2, 2011

Blended e-Learning to the Rescue - 6 Available Models

By Jan Kuyper Erland

Today's students eagerly welcome new virtual educational approaches, as new information is readily at their fingertips. To complement the vast amount of available curricula, even the high average and overly bright students can upgrade their cognitive skills beyond imaginable depths. Now, we can move forward without hesitation.

For slower students, the typical solution was in-classroom or pull out tutorial assistance of daily assignments. Teachers, not knowing how to implement advanced instructional strategies, remained instructing within this inefficient model. In many cases, teachers feared additional, cumbersome work in learning and implementing new methodologies.

In-class time remain at a premium. Tight budgets prevent ordering instructional materials. Even though grant and State monies pave the way, test scores stagnated.

Years of often poor and limited instructional content and video production on CDs-DVD's, hindered streamlined, high impact education. High tech-quality instruction will now make a difference for both the teacher and now “Screenager” student to achieve quality education meeting State policy Common Core Standards.

Now, the internet booms with educational innovation, paving its way into the emerging high-tech classroom. Teachers will no longer have to learn new methodologies, because Blended e-Learning will do it for them. Interactivity between the student and online lab will be key. Various forms of student engagement practice exist to interface with virtual learning.

A recent article (January 2011) by Horn and Staker of Innosight Institute, reviewed the current six available classroom Blended e-Learning models to relieve the teacher by offering new insights, and recharge all students to higher academic performance levels:

Model 1: Face-to-Face Driver; Supplemental Assistance
The physical teacher deploys online learning on a case-by-case basis to supplement or remediate, often in the back of the classroom in a study carrel, or in a technology lab.

Model 2: Student Rotation on a Fixed Schedule; Remote and Onsite – Teacher in Charge
Students rotate on a fixed schedule between online self-paced learning and sitting in a classroom with a traditional face-to-face teacher. The classroom teacher usually oversees the online work.

Model 3: Flex, as Needed, for Dropout - and Credit Recovery Programs
Flex model programs feature an online platform that delivers most of the curricula. Teachers provide on-site support on a flexible and adaptive as-needed basis through in-person tutoring sessions and small group sessions.

Model 4: Online Learning Lab Delivers the Entire Course in the Classroom
The online-lab model characterizes programs that rely on an online platform
to deliver the entire course but in a brick-and-mortar lab environment. Usually these programs provide online teachers. Paraprofessionals supervise, but offer little content expertise. Often students that participate in an online-lab program also take traditional courses and have typical block schedules.

Model 5: Self-Blend; High School Students Enroll in Online Courses
Blended learning among American high schools is the self-blend model, which encompasses any time students choose to take one or more courses online to supplement their traditional school’s catalog. The online learning is always remote, which distinguishes it from the online-lab model, but the traditional learning is in a brick-and-mortar school. All supplemental online schools that offer a la carte courses to individual students facilitate self-blending.

Model 6: Online Driver Platform and Remote Teacher; Home Schooling Option
The online-driver model involves an online platform and teacher that deliver all curricula. Students work remotely for the most part. Face-to-face check-ins is sometimes optional and other times required. Some of these programs offer brick and-mortar components as well, such as extracurricular activities.

These models have the potential to revolutionize education as we know it, offer excitement and learning nuances to the classroom, while additionally solving the budget crunches and raising student achievement performance scores.

Innosight’s 2011 white papers on Blended e-learning:

Horn, M. B, & Staker, H. (January 2011) The Rise of K-12 Blended Learning. Innosight Institute, Philadelphia, PA.

Clayton M. Christensen, Michael B. Horn, and Curtis W. Johnson, Disrupting Class: How Disruptive Innovation Will Change the Way the World Learns (New York: McGraw-Hill, 2008).

Monday, November 22, 2010

Cognitive Skills’ Outcome-Based Intervention Revealed the Latency Effect for Struggling Learners

Published October 22, 2010 by
The Special Education Advisor

What are the learning pathways? Research tells us that learners absorb new information through the primary sensory visual, auditory, kinesthetic-tactile pathways, (VAKT: Visual-Auditory-Kinesthetic-Tactile teaching method, and these entrances must be in working order. They also should optimally function together, or integrate.

One or two pathways may be stronger than the others, and can compete with the weaker ones, creating an out-of-sync learning input structure. Visual processing speed may be faster than a lagging auditory (listening) processing speed, creating a conflict between the two. (Rumelhart & McClelland, 1986). Without auditory-visual integration, (Hessler, 1982) the result is a “slow, inattentive learner” although the student is highly intelligent (Erland, July 1983).

Parents, unaware of the foundational cause of their child’s learning problems, flounder with eliciting expensive tutors, which do some good. Practice “Drill and Skill” software training also helps to some degree, although it is like handing an energizing coke to a runner with a broken leg. Like information processing, the race can not be won until the leg is repaired and mended.

The Role of Cognitive Skills Measurement and Training. Cognitive skills’ retraining of Guilford’s select mental abilities (Guilford, 1984, 1967) can be elected so the student can absorb, learn, understand, and apply new information. Many cognitive skills training programs have been developed by private companies and textbook companies have not absorbed such programs into their product lines. Unfortunately, this sensory integration, or “opening up the learning pathways” should be trained before the child learns basic skills.

Not only does the average parent or young adult learner not understand the relevance of cognitive skills training programs, but locating an efficient one is difficult. Many programs exist, and vary in their testing-measurement, evaluations, and applied methodologies. Those in populated areas may drive miles to obtain training, pay large, ongoing fees for a program that takes years of application to see results. The solution lies in remediating cognitive skills in the classroom, like a teaspoon of sugar to raise student ability levels.

The Latency Effect Revealed. Learning improvement results may not be evident because there is a “Latency Effect” for problem learners to show academic achievement results on national standardized achievement scores. This latency effect was discovered with a two school, eleven classroom experimental, longitudinal study. (Erland, Fall 2000).

Intervention Training Results of Two Fourth Grade Classrooms. I implemented a cognitive skills intervention and measurement study of two classrooms of low-achieving fourth grade parochial school students, (n=44) tracking their test results for the subsequent two years, with minor attrition. (Erland, Fall 2000). The gains can not be attributed to the subsequent teachers’ instruction, because the students were dispersed between three different classes each following year, and their subsequent test scores were reconfigured as the original experimental group. Longitudinal studies are difficult to implement because of transient students. If the students are not present, they can not be subsequently tested.

Most of the students had auditory (listening) weaknesses, and a few had severe visual processing deficits. In other words, they had learning, information processing issues, and their previous the Iowa Tests of Basic Skills (ITBS, Riverside, 2000) low scores reflected this, falling below the norms as individual classrooms (Erland, Fall 2000, table 1, p. 16). If would be a case where the teacher(s) could have been fired. But, they were, in fact, excellent teachers, and willing to apply a promising methodology that would possibly correct these student processing deficiencies.

The results showed a scaled variation of when, and at what point, the student began to “learn new information.” The fourth grade students in two classes in the ITBS subtests of Reading Comprehension, Math Total, Math Problems, Spelling, language, and Science (Erland, Fall 2000, pp. 32-34) revealed not only some immediate results, but also indicated a range of marked learning growth over a two-years of post-testing standardized measurements.

There was strong change for many at the one-year longitudinal point, and another group showed gains the second year following the intervention. This indicates that once the information sensory pathways are opened, the student can then begin understanding and applying classroom instruction. (Erland, Fall 2000)

Academic Achievement Results Now Expected. School administrators and districts are now increasingly demanding outcome-based academic achievement results. Unfortunately, the pressure is applied to the teacher, who may not have the necessary intervention tools at her fingertips. It is difficult to teach an entire classroom, where many of the students have info processing blockages, and can not, and subsequently do not, attend to instruction.

Administrators and school districts, eager to show academic achievement improvement, should recognize the problematical slow learner-latency effect even having strong classroom instructional input by the teacher. They also might consider accepting and adopting effective cognitive skill programs as a helpful classroom tool to raise the proficiency learning levels of the students. This would systematically raise achievement test scores without resorting to “teaching how to take the test,” which replaces hours of valuable classroom instructional-skills-learning time.

Classroom Partnered Learning. Consequently, with a room with many learning problems, teachers often resort to small group “partnering teams” in a differentiated classroom, where the slow learner copies the information from the more adept processing student leader. Unfortunately, the struggling student is not “learning”, but merely completing an assignment, to receive a grade, which will be an A or B to appease the parent. This student is subsequently, “passed through the system” with perhaps a limited career future.

Response To Intervention. Once students understand the teacher’s classroom instruction, it can be then applied; although this changing-evolutional process may be immediate or take one-two years. But, even with this latency effect, it is important that gains can be made by even the most problematical learner, rather than minimally or not at all, and then firing the teacher.

Erland, J. K. (Fall, 2000). Brain-Based accelerated learning longitudinal study revealed subsequent high academic achievement gain for low-achieving, low-cognitive skill fourth grade students. The Journal of Accelerated Learning and Teaching, 25, (3&4).

Erland, J. K. (July 1983). Methods and techniques of Cognitive Behavior Modification for accelerating both visual and auditory memory in learning disabled adolescents and young adult through inter-hemispheric specialization strategies. An instructional workshop session and manuscript.

Guilford, J. P. (1984). An odyssey of the SOI model: An autobiography of Dr. J. P. Guilford. Tokyo: Japan Head Office International Society For Intelligence Education.

Guilford, J. P. (1967). The nature of human intelligence. New York: McGraw Hill.

Hessler, G. (1982). Use and interpretation of the Woodcock-Johnson psycho-educational battery. Hingham, MA: Teaching Resources.

Riverside 2000. (1994). Iowa Tests of Basic Skills Integrated Assessment Program, Technical Summary I. Chicago, IL: The Riverside Publishing Co.(a subsidiary of Houghton Mifflin Harcourt).

Rumelhart, D. E., McClelland, J. and the PDP Research Group. (1986). Parallel distributed processing: Explorations in the micro structure of cognition. Cambridge, MA: MIT Press

VAKT: Visual-Auditory-Kinesthetic-Tactile teaching method,

Thursday, October 21, 2010


Pub. Special Education Advisor 10-17-10

A recent Wall Street Journal article, “How Handwriting Trains the Brain” (Bounds, G.) could conversely be stated that “Brain Training Changes Handwriting.” Technically speaking, increased and retrained brain activity can transform handwriting following twenty hours of intensive multi-sensory integration instruction (Erland, 2000).

What is Multi-Sensory Integration? Sensory integration can be defined as a successful combination of the visual, auditory, and tactile input processes to the brain. Early pioneer researcher and occupational therapist, Anna Jean Ayres, (1920–1989) wrote several books on the topic describing how deficits in sensory perception blocked informational input to the brain inhibiting motor output (Ayres, 1972, and Wikipedia, Ayres, J.).

Her forward-thinking work stirred controversy for a number of years. She wrote, quoted in the 1980s, Wikipedia, “It has not been easy for the helping professions to conceive of human behavior as an express of the brain, and they are still struggling to do so.” Unfortunately, these brain-learning, theory-practice amalgams remain today.

Which Cognitive Abilities are Required for Handwriting and Written Communication? Handwriting requires right-brain visual closure and spatial perceptual ability, with left-brain sequencing of letters combined with fine motor coordination.(Reid & Hresko, 1981) The connection of visual (seeing) and auditory (listening) learning are required for understanding, or the “integration of information (Hessler, 1982).”

Was Penmanship Taught? It is important to note that penmanship was not trained in my classes; per se. Students were instructed to “Think, Say, Do,” following the renowned Bandura’s 1971, Social Learning Theory, and the Gillingham & Stillman early reading-phonics multi-sensory model, 1970, which later became the recognized Orton-Gillingham Dyslexia training program.

Can Visual and Auditory Abilities Be Reliably Measured through Formal and Informal Assessments? Recognized norm-referenced, valid and reliable cognitive skills test batteries readily measure these sensory processing areas, The Detroit Tests of Learning Aptitude (DTLA) v. 1, 2 Visual Closure, Letters Sequences,, Auditory Memory for Words, and Oral Directions subtests; v. 3, & 4 subtests came later (Hammill, 1985; Baker and Leland, 1967, 1935, Pro-Ed). Additionally, Visual and auditory memory subtests from the Woodcock-Johnson Psycho-Educational Battery (1978) were also applied to obtain student baselines.

When I first began testing and retraining cognitive abilities in 1980,(Erland, 1980) it became an ongoing incubation project covering many years of test-teach-test-publish iterations applying my puppetry and choral speech methodology to these recognized research and practice models. The sensory integration interventions revealed pre-posttest training change on the visual closure and letter sequencing DTLA subtests, beginning in 1981 following my program instructional interventions.

Can Handwriting Change Reliably Indicate Changes in Learning Capability? Notable handwriting changes were consistently and immediately evident with a perceptual “turning point” after twenty hours of daily, intensive, multi-sensory training. Fourth and fifth grade students with additional adult pre-to-posttest handwriting and testing cumulative compilations exist, documenting perceptual and fine motor change. With school classroom 48-Day, 24-hours of prescribed sensory integration implementation, following the same twenty hours of media-based instruction, revealed improved perception, thought, handwriting, and test-taking (Special Education Advisor, 2010).

One experimental study evidenced posttest change with one-two-year marked longitudinal student improvement with two classrooms of low-achieving/low auditory processing fourth graders on the Iowa Tests of Basic Skills CogAT Quantitative (pretest 58%-posttest 71%; 2-yr. 70%) and Nonverbal (pretest 59%-posttest 72%; 2-yr. Long 76%) areas. (Iowa Tests of Basic Skills, CogAT and Erland, J. K. 2000, p.20). The CogAT test was externally administered by the school and scored by the Princeton Educational Testing Service (ETS). These results have a high correlation with reading comprehension and mathematical learning. Individual student three-year CogAT trending is on pp. 22-23 of this published report (Erland, 2000).

A sampling from the handwriting perceptual and sequencing change exhibits is available on:

Early on, it was determined through continuous, in-depth assessment and monitoring of all levels of learners and ages; children, business adults, and college students, that most individuals have information processing weaknesses or cognitive gaps ranging from mild- to- moderate- to- severe. And, unidentified, they are forced to cope with them.

Seeing continuous formal assessment outcome success, the ongoing research was continuously documented (1989-2000) in a scientific publication, The Journal of Accelerated Learning and Teaching. Needing a nominal reference for this research intervention, the edutainment methodology of using puppetry and choral speech was given the name: The Bridge to Achievement® (The BTA). The accompanying continuous formal assessment regulated that trained students were not merely “motivated’, or thus transformed through positive thinking, but had outcomes of improved reading and math scores (Erland, 1994). Yet, this overt handwriting transformation also operated as positive personal feedback and as an incentive for learners to “keep trying.”

To eliminate the possible motivational contamination of using puppets as “novel stimuli,” an eleven classroom experimental study was conducted using an “alternate media activity” for the control groups (Erland, 1999).

Discovering Learning Issues: Problems in these cognitive and fine motor areas show up in the early grades when basic skills are initially taught, indicating visual perceptual difficulties or directed as ADHD. While many children are formally referred and tested for Special Education from classroom observations, many are not, and subsequently fall through the cracks, missing important inter-sensory training during the critical early years.

Parents should show advocacy and watch for faulty handwriting symptoms and seek professional guidance and direction. Ignoring these critical perceptual symptoms, leads to a life-time of potential auxiliary written communication set-backs and other social-educational learning issues.

Another recent Special Education Advisor article by Claire Nissenbaum, M.A. (2010), “Messy Handwriting is a Predictor of ADHD in Girls," also indicates perceptual-penmanship red flags, because boys have spatial and coordination advantage over girls, Durden-Smith and DeSimone, 1984. Yet, boys outnumber girls in Special Education referrals and many parents do not want labeling stigma, “Once In, Never Out.” p. 115 Turnbull, Stowe, Huerta, 2007.

The bottom line is that perceptual and fine motor skill problems, as evidenced in handwriting samples, can be retrained through cognitive skill sensory integration instruction. Many well-known programs have existed for some time that offers this type of training in varying methodology formats and time requirements, obtaining a range of outcome results.

Ayres, J. A. (1972). Sensory integration and learning disorders. Los Angeles: Western Psychological Corporation. Wikipedia: Anna Jean Ayres biography.

Baker, H. & Leland, B. (1967). Detroit Tests of Learning Aptitude - 1. Indianapolis, IN: Bobbs-Merrill.

Bandura, A. K. (1971). Social learning theory. Palo Alto, CA: Stanford University Press

Bounds, G. (October 5, 2010). How handwriting trains the brain. The Wall Street Journal. Health and Wellness.

Durden-Smith and DeSimone, D. (1984) Sex and the Brain. New York: Warner Books.

Erland, J. K. (Fall, 2000). Brain-Based accelerated learning longitudinal study revealed subsequent high academic achievement gain for low-achieving, low-cognitive skill fourth grade students. 25, (3&4).

Erland, J. K. (Fall, 1999). Brain-Based accelerated learning and cognitive skills training using interactive media expedites high academic achievement. Journal of Accelerative Learning and Teaching, 24, (3&4).

Erland, J. K. (1994). Video-taped instruction creates listening and visual memory integration for higher reading and math scores. Journal of the Society for Accelerative Learning and Teaching, 19, (2), 155-227.

Erland, J. K. (1980). Vicarious modeling using peers and puppets with learning disabled adolescents in following oral directions. Unpublished master's thesis. University of Kansas, Lawrence.

Gillingham, A., & Stillman, B. W. (1970). Remedial training for children with specific disability in reading, spelling, and penmanship. Cambridge, MA: Educators Publishing Service, Inc.

Hammill, D. D. (1985). Detroit Tests of Learning Aptitude-2. Austin, TX: Pro-Ed.

Hessler, G. (1982). Use and interpretation of the Woodcock-Johnson psycho-educational battery. Hingham, MA: Teaching Resources.

Nissenbaum, C. (September 30, 2010). “Messy Handwriting is a Predictor of ADHD in Girls,” Special Education Advisor; The IEP and Special Education Social Network.

Reid, D. K., & Hresko, W. P. (1981). A cognitive approach to learning disabilities. New York: McGraw Hill.pp.16-17.

Riverside 2000. (1994). Iowa Tests of Basic Skills Integrated Assessment Program, Technical Summary I. Chicago, IL: The Riverside Publishing Co.(a subsidiary of Houghton Mifflin Harcourt)

Turnbull, H.R., Stowe, M.J., and Huerta, N.E. (2007). Free Appropriate Public Education. Denver: Love Publishing.

Woodcock, R. W. (1978). Development and standardization of the Woodcock-Johnson psycho-educational battery. Higham, MA: Teaching Resources Corp.