Tuesday, December 20, 2022

Elusive, Rational Cognition

                                 Found Through Deep Learning Rehearsal Practice


The Universal Problem:

My former article “Think Twice” discussed how visual and auditory memory integration (necessary for deep understanding/comprehension) becomes elusive with too much addictive screen time adherence. We all “obey” with compulsivity our screens. Marketing strategies depend upon our compulsive natures that we will react instantly to their clever lures.

 Subsequently, integrated long-term memory transfer becomes critical for optimum decision making. Case in Point Example:  Recently three international development giants were engulfed with their own power-ego and screen lure that they lost billions with inept decision making. This can happen anywhere, any time for anybody. Common sense may go by the wayside.

Visual and auditory memories should always be in sync to transfer to long-term understanding.  Unfortunately, the more we rapidly fire our way through visual screens, cells, tablets, desk tops, TVs, our listening (auditory) memory becomes latent. Our visual memory becomes “in charge” of us.

Therefore, it is important for you to realize and understand the consequences of your actions, and how long-term-memory integration factors play into them, and in your life. For example, you may find yourself “fired” from your job, as it takes 3-4 times the effort to complete an assignment or project; you are  constantly yelling, nagging your kids because they don’t listen and follow directions like you thought they should have done.

 The Solution: Innovative, progressive learning over 20-24 input hours.

 But, which one? Necessary criteria for deep, solid attention and retention:

1.         Musical, rhythmical comedy is a good option to obtain fixed attention for deep learning,

2.         Consecutive practice is the next requirement.

3.         The lessons must then build on each other in difficulty level with purpose.

4.         Then, the learner must see their own progressive improvement, and keep going.

5.         Finally, the rhythmic visual and sound adherence will re-formulate one’s brain cognition and  integration. Improvement is “not a quick fix”, but you will see improvement gradually, peaking in a year or two.

 This article can help you recognize and resolve your insidious limitations, so you can take action to alleviate stress and confusion.

Sunday, October 30, 2022

Think Twice

Memory (Listening) Transfer Awareness


Many of us are familiar with the big variety of brain games designed for visual working memory speed. Unfortunately, they do not measure long term memory transfer, visual and auditory, needed to understand, and retain, in-depth meanings when learning new material.

 Also referenced as deep learning memory, or brain knowledge transfer, it becomes vital for remembering math and science operations and reading comprehension. These fundamental academics underlie the ability to follow procedures and instructions in many professional arenas.

 Seldom does a single game application address all cognitive processing pieces simultaneously. Multiple training programs address “one-at- a- time” training of each perceptual processing unit. Specific cognitive skills training will initiate opening the door for additional long- term memory transfer applications. Keep in mind that there are a myriad of additional internal cognitive ability elements maintaining the overall learning and memory structure.

My writings for years have emphasized the need for visual and auditory integration, for following procedures, but there are additional properties often unnoticed; long term memory transfer, the basis for understanding/comprehending, retaining, and applying new information.

 Additionally, many brain games measure visual memory speed primarily, in repeated replicated – isolated patterns, but are not integrated with listening memory. Inadvertently, they are achieving the inverse of what they are trying to accomplish through visual memory training, by pulling the visual memory segment faster, and out of sync, with the overly needed auditory processing. The two memories, then, do not integrate properly for applied conceptualization.

 As a result, we now experience national low school reading and math scores. This is not only due to adherence to these autonomous, yet limited, skill practice screen games, but they inadvertently create a shortage of a skilled workforce that can not follow or remember detailed instructions and procedures, as the required auditory memory transfer practice unit had been overlooked.

We become horrified and baffled, blaming the problem on CoVid isolation with too many applications to sort through coupled with school/parent/business administrative issues.

I have referenced this transfer as: Deep Learning. My initial trial studies suggested that certain environmental parameters or conditions had to be in place. These earlier conditions are now replaced by online learning through the adoption of device screens.

My former writings have cautioned about too much screen time with visual images can create an inverse auditory memory transfer needed for conceptualization. Screen time should couple not only with concept practice, but inherent strategies that include widely adopted note taking and visualization coupled with self-talk while slowly increasing the difficulty measures through a variety of lessons.

 Deciding to recognize, understand, and adopt, long-term visual with auditory memory integration transfer is your first important step towards personal growth and professional progress.

Wednesday, September 21, 2022

Looping Images and Sounds


Looping Images and Sounds

Evoke Deep Learning Promise

Rotating Comic Characters


Deep Learning Practice


Current psychological research relates that over-dependence on device/computer screens can lead to short attention spans, with our visual speed crushing our inherent listening capability.  Yet, we still rely heavily on multiple screens for our daily pursuits.

How can we maintain our exposure to the myriad of screen images, with multiple details on split visual fields, and yet use them even further to benefit and escalate us? 

Although our visual memory can dominate with this screen adhesion, our auditory memory (listening) then suffers, out-of- sync.  Unable to integrate auditory, we can only focus on singular image-memory intake. One-item-at-a-time; primarily, visually.

 However, we can remedy this imbalance, and put laborious visual screen intake to our advantage. But, that is, if we agree to undertake the needed effort required; admitting that a better focused, integrated, memory spans has personal value. 

Question:  Why do I need Deep Learning rehearsal looping practice to obtain higher memory spans? I have plenty to do with my screen life as it is, and there are many simple brain games available.

Answer:  Because most jobs now require procedural training with an eye for detail, management acumen. Everyday life demands require fast organizational self-management. Furthermore, our daily life and work productivity could suffer, especially if procedural listening and instructions are required.

 Change needed.

Call in comic characters to the rescue -- inanimate 3D objects become activated

Looping images and sounds can strengthen our minds. Continuous rehearsal segments will affect the frontal brain cortex for improved working memory [1] required to quickly learn procedures. Okay, what will comprise these segments?

 Looping comic characters.

Five specific characters, in a researched and practiced program, entered the rehearsal paradigm stage.  Although they varied in gender, appearance, personality, and temperament, nonetheless, remained non-distracting, timed objects.

But, soon they went to work, becoming free to loop repetively with interplay.[2] Their assignment was mental skill sequencing practice, fundamental to following oral and written directions and procedures.

The looped motion interaction evolves into its own reinforced learning [3] for the participant. Each spoken entity creates a visual and sound unit to reinforce the preceding segment, as Leonardo noted in the early 1500s, Renaissance. [4]

The visual facial patterns become oriented in space-time creating their own local motion/sound/visual energy.[5]

Question. How will these objects create auditory memory integration with Deep Learning features? 
Answer: Through 5th Dimension counter point, [6] or parallel thought [7]

Question:  What is the 5th Dimension aspect? Is it strictly an assumption?
Answer:  The 5th D formulates as a result of combining the first four dimensions that had decades of scientifically documented mechanisms. The three common dimensions now create four and five added complex dimensions into one serial, cumulative, conception.

All five progressive dimensions each had years of scientific, well-documented, authenticated research and practice. [8]

1st Dimension – flat objects

2nd Dimension – cartoons

3rd Dimension – cubism, 3-D

4th Dimension – 4D - quantum sound and image sounds, into higher memory span loops over time and space distances (complex segmented layers in a smooth flow field). [9]

5th Dimension – 5D - layers of looped thought creates Counterpoint known as parallel thinking[10]. The constant looping span rehearsal formulates Deep Learning practice.

[1]  Kandel, E. R. (2012). The age of insight. New York: Random House.

[2]  Hofstader, D. (1979). Gödel, Escher, Bach: The eternal golden braid. New York: Basic Books. p. 239.

[3] Wayner. P. (Sept. 5, 2022). What is Reinforcement Learning?  How AI Trains Itself. MetaTech Online Events.

[4] Shlain, L. (1991). Art and physics: Parallel visions in space time, light. New York: William Morrow. p. 433.

[5] Adelman E. H. (August 1991). Mechanisms for Motion Perception.  Optics and Photonics News, pp. 24-30.

[6] Rumelhart, D. E., McClelland, J. and the PDP Research Group. (1986).  Parallel distributed processing:  Explorations in the micro structure of cognition.  Cambridge, MA: MIT Press

[7]  Erland, J. K. Erland, (February 4, 1986; copyright TXu 225 862). Contrapuntal Thinking and Definition of Sweeping Thoughts.

[8] Erland, J. K. (Fall 2000). Brain-Based Longitudinal Study Reveals Subsequent High Academic Achievement Gain for Low-Achieving, Low Cognitive Skills, Fourth Grade Students. Journal of Accelerated Learning and Teaching. 25, (3&4) pp.5-48. ERIC ED # 453-553. & # CS 510 558. https://Books.Google.com/jankuypererland page 41,

[9] Learning Visual Groups from Co-occurrences in Space and Time. (2016). Isola, P., Zoran, D., Krishnan, K., Adelson, E. H., International Conference on Learning Representations, workshop paper. Abstract PDF

[10]  Erland, J. K. (1986), (February 4, 1986; copyright TXu 225 862). Contrapuntal Thinking and Definition of Sweeping Thoughts.


Monday, June 20, 2022

Deep Learning Practice Resolves Retention Issues

 This article expands on my recent January “Content Timing Process Realized” and March 2022 blogs on “Deep Learning Applied” findings, to elucidate on how learning retention can be actualized through applied parallel thought (Erland, J. K. February 4, 1986); Rumelhart. D. E. McClelland, J. 1986), and neurological codes, (Hinton, G. 2006). Looping, puppetry dramatization becomes a key deep memory element for re-training career and academic skill retention (Erland, J. K. 1980).

 A highly skilled workforce is a requirement in today’s demanding technological economy. Business and industry now grapple how to create upskilling training that retains and advances eager workers in need of procedural learning. Many have ingrained lack of focus creating erratic behavior and follow-through with written and oral directions that underlie all procedural details.

 Working memory becomes the impetus for activating layered segmented chunks, rotating in spans or units, known as “Deep Learning”, earlier referenced as “Contrapuntal, Sweeping, or Parallel Thinking”© (Erland, Janis L., 1986) in my early writings. This innovative Deep Learning, cognitive process is a vitally needed retention component for up-skilling and re-skilling training. Deep Learning offers a critical component for planning, making coherent decisions, and expressing newly learned skills.

 As a conduit to create the procedural system outcome, are “Deep Learning” practice sessions. Art, science, and computational skills are provided by innovative ventriloquist, prosody speaking, puppets. The participant assumes the role of detecting new patterns and systems.

 The Bridge to Achievement’s (BTA) mental agility, a cognitive, span-expansion coding process, has been documented through serial published, juried, award-winning, longitudinal experimental research for academic and career achievement. Outstanding outcomes were documented in math, reading and language skills.

Additionally, the extensive longitudinal data research revealed new mental strength will sustain the enhanced skills over time, when applied consistently. The BTA Deep Learning practice becomes a valued supplemental front engine for all reading, math, and language programs, or used independently as a “stand alone, mental jump-starter”. Subsequently, the intense, Deep Learning rehearsal process creates a new, higher functioning, and more optimistic, empowered individual.

 The unique BTA content elements cement learning retention in multiple ways:

 -     Brief, timed, self-paced lessons. Mental focus maintained through ongoing fixed, focal interest.

-     Original, one-of-a-kind, phonetic and coding practice lessons.

      -     Lessons increase gradually in complexity with locked, timing, pacing.

      -     Fourteen to thirty minute short, segmented, daily lessons offer less time involvement.

      -     Whole-brain, peers and puppets, modeling rehearsal regimen (Erland, J. K.  1980).

      -     Authentic, Hollywood Golden Age ventriloquist puppets applied as adjacent role models.

      -     Thirteen choreographed character positions rotate in loops over 800 unique segments.

      -     Solid, verified, data-based published results with multiple 3rd party reviewers (Erland, J. K. Fall 2000).


Erland, J. K. (1980). Vicarious modeling using peers and puppets with learning disabled adolescents in following oral directions. The University of Kansas, Lawrence, Kansas.

Erland, Janis L. (February 4, 1986; copyright TXu 225 862). Contrapuntal Thinking and Definition of Sweeping Thoughts.

Erland J. K. (c 1989), Hierarchy of Thinking. Mem-ExSpan, Inc.

Erland, J. K. (Fall, 1998). Cognitive skills and accelerated learning memory training using interactive media improves academic performance in reading and math.  Journal of Accelerative Learning and Teaching23, (3 & 4), 3-57.

Erland, J. K. (Fall 2000). Brain-Based Longitudinal Study Reveals Subsequent High Academic Achievement Gain for Low-Achieving, Low Cognitive Skills, Fourth Grade Students. Journal of Accelerated Learning and Teaching. 25, (3&4) pp.5-48. ERIC ED # 453-553. & # CS 510 558. https://Books.Google.com/jankuypererland page 41.

Erland, J. K. (© 2008). Downloadable, unpublished report. Five Generations, 27-years of iterative Brain-Based Accelerative Learning Experimentation Demonstrate Cognitive Skill Improvement Enhances Academic and Career Goals. (https://memspan/jalt).

Hinton, G. (2006). Deep Learning and the recipient of the 2001 Rumelhart Deep Learning Prize.

Rumelhart, D. E., McClelland, J. and the PDP Research Group. (1986).  Parallel distributed processing:  Explorations in the micro structure of cognition. Cambridge, MA: MIT Press.      


Saturday, June 4, 2022

The New Reality of Personal Development


Personalized Development, as we have always known it, is being revamped, morphed, into new online realities. Training departments have ceased to exist as the new reality is online learning. If an internal course requires quick internal learning, a staff member is selected to produce a PowerPoint lesson, quickly, and spend a couple of off hours to present it.

 In the educational world, routine, online, personal development is required by both the state and many school districts. The business world now focuses on re-skill and up-skill learning.  Advanced training becomes the new workforce status requirement, as there is a large shortage of technical workers who can successfully follow procedures quickly and accurately. New information must be imparted, but how? And, if created, will there be enough gained subject matter retention to make training time practical and worthwhile?

 Many companies and schools can not incorporate new learning applications during assigned work hours, as there is already highly scheduled job responsibilities.

 Yet, new online applications must be instilled quickly to create the much needed, proficient workforce. Not to mention that eager course sign-ups following a days’ work, may be hard to come by. Subsequently, an employee must see additional personal benefits for the extra time involvement.

 Some work employees or school teachers can elect to take up-skilling training during personal breaks, if the app fits into the allocated break time framework.

 Okay, how will this much-needed learning practice come about? Several factors must be in place:

 - The applicant must determine long, lasting personal benefits, at low, or no personal cost

-  Enhances job certification

-  Online training must be fast, easy, and in short time blocks

-  No guidebook, manuals, or homework should be necessary

-  Lessons begins with short, easy, steps to gain confidence and momentum

-  Improvement is recognizable to the participant and team members

-  The new process app can be added to existing dashboards

- Recognition that a new app enhances further development, promotional options  and advanced job roles

     And finally, any new product must have a data-backed success rate to ensure the trainee that the process is worth the time involvement spent.

Sunday, March 20, 2022

Clinical Deep Learning Practice Applied

 No Magic Bullet or Quick Fix:  

Procedural Learning Objectives


Jan Kuyper Erland


 Summative Observations of a Data-Driven Framework:

Continuous anecdotal data science applications created some interesting observations. With perplexing longitudinal results with all ages showing gains of various cognitive functioning levels, I began to investigate these differences between individuals and yet, the results had mysteriously maintained not only post years latently through diagnostic follow up assessments, but maintained for decades, as evidenced by continuing circumstantial reports of impressive, continuing high career status.

 Yet, these data phenomena, under certain application-environmental provisions, would be routinely expected.

 Many of the following factors are routinely studied post treatment and verified by cognitive scientists, and should be under continued review at this juncture.

 Clinical anecdotal records revealed the following objectives initially and in subsequent years:

Both performance and mental attitude changed positively for many, not only during the course, but following due, most in all probability, to neuronal rapid, continued flexibility.

Results showed steady growth with all learning levels, but varied among individual subjects.

Results revealed larger growth by treatment groups than a gifted control groups and alternate media activity control groups.

Results were one-two years latent with challenging conditions, and these learners required immediate and semi-annual on-going refreshers.

 Average profiles varied in the outcome results. Some appeared to be suddenly “popped to the very high levels”, while others waxed according to their current brain’s proficiency wiring reflecting daily mental habits.

 As my master thesis indicated; puppets had the same “star” modeling influence power as did peer- team mates.[i]

 Long term memory transfer bridging to critical thought was the most difficult to improve, and required more intense, continuing working memory practice and, with reading and higher order thinking.

Results maintained when eagerly adopted and accepted by the client through the modeling routines.

Peer team models are the important factor for not only overall program acceptance, but for rehearsal spoken timing and pacing.

The deep phonological rehearsal verbal training may have affected the generalization outcomes reported in the research and published higher reading and math scores. [ii]

Intense verbal practice while viewing rotating, timed images and sounds impact working short term sequential memory leading to auditory-visual integration; a requirement for reading comprehension.

Subsequently, the reader must have a fundamental understanding, at the contextual level, for comprehending rigorous texts. To meet the top criteria of the Hierarchy of Thinking Model’s Critical Thought, [iii] this layer must be in place.



[i]  Erland, J. K. (1980, October) Vicarious Modeling Using Peers and Puppets with Learning Disabled Adolescents. © 1980. The University of Kansas. Lawrence, Kansas.

[ii]  Erland, J. K. (1999, Fall) Brain-Based Accelerated Learning and Cognitive Skills Training Using Interactive Media Expedites High Academic Achievement. The Journal of Accelrerated Learning and Teaching24, 3&4.

[iii]  Erland, Hierarchy of Thinking. Published in 1999 International Alliance of Learning’s monograph. Brain-Based Accelerated Learning and Cognitive Skills Training Using Interactive Media Expedites High Academic Achievement. 24, 3&4. pp.12-14.



Saturday, March 5, 2022

Scientific Hierarchy of Thinking Model

 Scientific Hierarchy of Thinking Model [1]

Seeking an Information Processing
Intervention Solution
through Deep Learning Cognitive Practice

By Jan Kuyper Erland


My earlier blog articles described my innovative, rapid learning process beginning as a parent wishing to give my own family members a learning edge for high cognitive, thought levels.

 The initial training was based on my master’s manuscript, “Following Oral Directions with Peers and Puppets” [2] that applied Bandura’s Social Learning Theory [3] and role models. Findings showed no significant difference between either peers or puppets as role models with junior high students with challenging conditions.

 Current brain research corroborates theses early psychological cognition brain functions/domain findings through fMRI brain scans. [4]

 Later, this initial research premise was conveyed by book chapter articles regarding 5-Dimensional layered thinking describing the unique application process, applying the Hierarchy of Thinking model.

 This scientific model update becomes thought-provoking research to any reader, as experimental psychology may apply multiple scientific models each uniquely arranged with the cognitive scientists’ viewpoint on brain activation functions and how they are applied.

 Rarely is an independent, experimental cognitive researcher also a school teacher, educational content developer, and dramatic artist, creating a scalable model with five generations of research and development pointing to a viable solution.

Research papers/projects often show little fidelity with actual treatments, as few researchers have been trained in applied learning procedures and resolve immediate student learning concerns similarly to experienced classroom teachers. Subsequently, unique methods of unusually innovative treatments are not routinely applied. [5]

 This investigator applied years of an unfamiliar treatment in multiple environments, with various age group samples, within several geographical areas, with four longitudinal data reports over an extended generational time span. Many 3rd party reviewers and independent testing companies were involved, and the longitudinal experimental trials were with the same intact treatment groupings, randomly applied with control groups, ultimately received an international award. [6]

 The Hierarchy of Thinking model was rigorously adhered to within actual practice by focusing on initial chunking rote memorization for patterned details, leading upwards to integrating multiple relationships of sequencing procedural information, then directed to Abstract Problem Solving – Critical thought. [7]

 This generational outcome indicated strong procedural sequencing mental ability for individuals, ages 9-99 desiring increased academic and career skill enhancement.


[1] Erland, J. K. (c 1989) Hierarchy of Thinking. Published in 1999 JALT research monograph.

[2] Erland, J. K. (1980, October) “Vicarious Modeling Using Peers and Puppets with Learning Disabled Adolescents” © 1980. The University of Kansas: Lawrence, Kansas.

[3] Bandura, A, (1971), Social learning theory, Stanford University: General Learning Corporation.

[4] Turner, J. A. M.D. (December 24, 2021). Re-conceptualizing domains in neuroscience, hopes, and utopias aside. Nature Neuroscience.

[5] Schueller. S.M. (November 2020) Scaling Evidence-Based Treatments Through Digital Mental Health. American Psychologist. Journal of the American Psychological Association. 75.  #8. 1093-1104.

[6] Erland, J. K. (2008) Downloadable, unpublished report. Five Generations 27-years of Iterative Brain Based Accelerated Learning Experimentation Demonstrate Cognitive Skills\ Improvement Enhances Academic and Career Goals. (https://memspan.com/jalt.html). Pages 19-20 Landmark study: International Alliance for Learning (IAL, June 2001).

[7] Erland, J; K. (1999). Brain-Based Accelerated Learning and Cognitive Skills Training Using Interactive Media Expedites High Academic Achievement. Journal of Accelerated Learning and Teaching. 24. (3&4) Monograph. ERIC: 437 650. ©1999.

Monday, January 17, 2022

A Content Timing Process Realized

For Cognitive Interventions


Completing a Cognitive Restructuring Method

This article continues a series regarding the importance of procedural learning through cognitive training, and how an incubated, research program became functionally realized.

I previously discussed how images and impressions overcome our day with multitudes of imprints that cloud our auditory processing capability, necessary for adept procedural learning.

Subsequently, in our new current world view, we remain locked into personal cell phone images, unable to remain focused on critically needed listening intentions for any length of time.

Although listening and visual processing must be in sync, unfortunately, visual images input rule. Considering these multiple embedded visual distractions, this technical system requires further scientific data study for future valued marketing determinations.

In my former article on “Impressionable Speaking Images”, I commented that I, personally, carefully evaluated written and spoken directive steps, both internally and externally, though various data analysis methods.

Personally, experiencing enhanced cognitive visual timing feedback, this process would assist the overall goal of syncing visual perception and auditory sequencing capability with the participants. If a viewer sees repeated spatial faces and voices in a timing motion, there are usually positive cognitive outcomes. [1]

It became obvious that I had to replicate myself through carefully filmed, timed, lessons, comprised of over 600 interlocking visual/auditory segments, so others could be taught with the same, identical system. Specified age groups would eventually encompass test- trial niches.

This restructuring cognitive system was never designed originally, as a prototype product. It was, somewhat, a method to improve my own family’s cognitive processing abilities, with a more procedural mind infusion intent. And, subsequently, this objective became realized some time ago.

Remarkably, it now continues realized, indirectly expanded exponentially, through all the activated participants with their own endeavors. Hundreds, even thousands, have experienced better lives found in other unique ways through different avenues.

It has been repeatedly applied through the retro-synthesis threads, the intensive training each training participants received, by following sequential procedures, coding, quickly. Consequently, their procedural management expertise continues to build, almost on a daily basis, helping thousands of individuals, through each of their own individual career objectives; many of whom, operate on very high national levels.

It is not often that an art/science accelerative method becomes incubated for decades, waiting for not only the essential technology to become available, but also attain the right studio and photographer filming requirements that was essential for creating dramatic image/sound looping action.[2]

Yet, the artistic/scientific under-pinnings became a nagging, daunting quest, as the filming should be completed with me as the primary engineer, script designer. And, how, when, and who would be involved with the required pre-production staging, film it, and then conduct the ongoing post-production sound-visual editing requirements?

As key decision maker, I eventually found and trained the essential photographer, personally recommended, and eagerly available to moonlight his day job. He was tightly bookended with a demanding work-family schedule that interfaced with my own long, search time- table. Like all learners, the photographer and I had to operate at our own pace, work with overly limited, available time slots, creating multiple, ongoing, insightful revisions, to realize any sort of valued outcome.

 Background Review: Creating a Class with the Necessary Cognition Sequencing Lessons.

With a wide variety of teaching, in different states and school districts, I found my creative abilities non-applicable with many school teaching models. Thereby, it became pertinent to create a viable research and development establishment. The entire family was the basis, and stood to benefit with this decision.

Step 1: Test the family. Assessing my own family members proved to be an interesting quest, particularly, as to how their cognitive scores correlated with their schools’ cognitive and achievement findings. One family member had been assessed by the school psychologist, and qualified for gifted services; a second member was close to qualifying for gifted services.

Their profile ranges intrigued me, including my own.  Even-scored, flat profiles can be readily apparent, as are low-deficit, average, and low average summaries; but they did not exist here. In our case, estimations inter-played with average, high-average, to gifted profiles between family members.

It was “the obvious cognitive, black, holes” that I started to wonder about. Subsequently, those cognitive calculations served as both a baseline and barometer, for my continuing assessment profiles and instructional lesson’ designing.

An unusual, alternative, learning intervention method was emerging quite by happenstance. The process demanded strong data analytic solutions, as it could not really be called a specific program, as the improvement lessons had to be created from scratch. I had used spelling words, word usage, as a school learning disability teacher, occasionally with simple hand puppets, even with junior high ages.

 Subsequently, this new, home-schooling class consisted of junior high, high school, and college-age students. Without question, multiple-vocal ventriloquist puppets now commanded the home stage. A most unusual, entrepreneurial story unfolded that could eventually transform animation and virtual-augmented reality formats in later decades.

The Instructional Model:

To begin at the starting point, an instructor must determine who is available to teach, at what instructional level and what will the material consist of, for a specific objective. Some professorial friends had instigated and pressed this endeavor, as they insisted that I help their high school-age son, as a certified learning disability teacher. I now found myself teaching in a home studio with my own kids, with the additional requested student. 

These Hollywood, vocal-action puppets that had been part of a family touring, comic, puppet show in the 1970s; were now happily instructing learners of all ages, with cognitive instruction.

Imaginatively creative, and scientifically well- versed in clinical assessment and methodology, I planned sequencing items on the spot spontaneously-continuously, monitoring it internally-mentally/externally, primed with data analysis.

Animated content can be created rapidly, whereas live multi-segmented, cubistic images demand dramatic, time evolvement.  Pieced timed, looping segments, cannot materialize onto meaningful instructional substance, unless retro-synthesis [3] analysis is applied through an ongoing serial encoding-decoding linking process, called concatenation. 

This constant serial linking instills recursive- patterned, insightful, monitored, awareness of the ongoing process.

Technically, it was soon becoming rigorous cognitive skills testing and training for many people in a wide range of abilities, utilized as research subjects at multiple test sites, in different geographical locales.

Five professors analyzed the raw scores conducted by multiple clinicians who individually administered the cognitive raw scores. [4] These five universities partnered with national testing companies that verified the posttest academic results. Landmark articles were written and published in a juried journal. [5]

 Soon twelve East coast inner city school districts, partnered with two rural Midwestern districts, and three universities, were part of a large grant project. Luckily, the proposal did not materialize, as there were embedded severe technological limitations for rapid implementation success.

 The rest of the story is history, as these technological restrictions have now been addressed.





[1] Y. Chen, D.J. Norton, R. McBain, J. Gold, J.A. Frazier, J.T. Coyle,

Enhanced local processing of dynamic visual information in autism: Evidence from speed discrimination, Neuropsychologia, Volume 50, Issue 5, 2012, Pages 733-739, ISSN 0028-3932,



Abstract: An important issue for understanding visual perception in autism concerns whether individuals with this neurodevelopmental disorder possess an advantage in processing local visual information, and if so, what is the nature of this advantage. Perception of movement speed is a visual process that relies on computation of local spatiotemporal signals but requires the comparison of information from more than a single spatial location or temporal point. This study examined speed discrimination in adolescents (ages 13–18 years old) with autism spectrum disorders (ASD). Compared to healthy controls (n=17), individuals with ASD (n=19) showed similarly precise speed discrimination when two comparison motion stimuli (random dot patterns) were presented closely in time (0.5s). With a longer temporal interval (3s) between the motion stimuli, individuals with ASD outperformed healthy controls on speed discrimination. On a second task—global motion perception—in which individuals were asked to detect coherent motion, individuals with ASD exhibited slightly degraded performance levels. The observed temporally selective enhancement in speed discrimination indicates that a local processing advantage in autism develops over a longer temporal range and is not limited to the spatial domain. These results suggest a dynamic perceptual mechanism for understanding, and therapeutically addressing, atypical visual processing in this group. 

Keywords: Visual system; Motion; Local processing; Speed discrimination; Neurodevelopment

[2] @article{Hardman2011UnderstandingCI,   title={Understanding creative intuition}  author={Teresa Hardman}, 
  journal={de arte}, year={2011}, volume={46},  pages={22 - 32}

 3 Segler, M., Preuss, M. & Waller, M. (March 2018) Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555, 604–610 (2018). https://doi.org/10.1038/nature25978  also, Gateway technology AI applications.

 [4] Erland, J. K. (©2008). Downloadable, unpublished report. Five Generations, 27-years of iterative Brain-Based Accelerative Learning Experimentation Demonstrate Cognitive Skill Improvement Enhances Academic and Career Goals. (https://memspan/jalt).

5 Erland, J. K. (Fall 2000). Brain-Based Longitudinal Study Reveals Subsequent High Academic Achievement Gain for Low-Achieving, Low Cognitive Skills, Fourth Grade Students. Journal of Accelerated Learning and Teaching. 25, (3&4) pp.5-48. ERIC ED # 453-553. & # CS 510 558. https://Books.Google.com/jankuypererland page 41.and

Erland J. K. (c 1989), Hierarchy of Thinking. Mem-ExSpan, Inc.