Sunday, December 5, 2021

             Impressionable, Speaking Images, Unique Insights, Offer Solutions

Jan Kuyper Erland

How Images and Sound Patterns Can Affect Us

Images can either speak through metaphors, or a facial image can produce speaking sounds, easily imitated through generated digitals.  Yet, imitations rarely match the original, either real or digital, because of the depth of energy each produces and reveals. The Dutch artist, Holbein, in 1522, applied rhetorical, images that appeared to speak through symbolism that now rein in art museum settings today.[1]  Images can be profound, speak through symbolism, or reality, creating many varied emotional reactions and interpretations.

In our digital age, we race daily, pulled drawn through hundreds of fast visual clips, not thinking about its abstract symbolism.  But it is there, affecting us one way or another, as it is the core of advertising and film images constantly penetrating us. [2] Films utilize fast, two second action snippets. Our minds race to keep up, and absorb, but overwhelmed, we look at a collage of movement. These combined facial and sound images penetrate our minds more than we believe. [3]

Subsequently, we may find ourselves immersed, in a dulled, tranced state. Subsequently, that is why we like outdoor activities with dimensional images and sounds like parades with balloons and marching bands, or football games’ image and play actions. We are deeply mired on a “look, see, respond-react” holistic mode, rather than a “sequential, systematic, procedural, step-by-step style” applying multi-modal sense inter-play.

Let’s consider how images and sounds can offer beneficial tools to direct us into a productive, procedural, mindset to meet new technological demands.

In my recent blog publication update,[4] I verified importance of sequential details as they interplay [5] with working memory for creating accurate procedures. And, why step by step visual and listening details must not only integrate, [6] but bridge for accurate procedures found in all academics, as linguistics, coding, reading, mathematics. Unfortunately, tools are often too quickly determined, then applied without careful applications, or with ongoing evaluations to determine potential decay.


 

We All Can Take Steps Forward for Positive Change, at Any Age

No one wants to admit, let alone reveal, their cognitive shortcomings, or if they even have them.  Most of us are not aware that we have our own, unique cognitive profile, of strengths and weaknesses. Although it can vary somewhat routinely, our profile does have solid indicating parameters, as to how efficiently we processing incoming information.

As a result, our unique profiles remain hidden, to a person’s great disadvantage. In the “Sequenced Details” blog, I stressed that we all need to be aware of our cognitive abilities, at least roughly, early on. However, some specific cognitive skill assessments may require specific measures, given by qualified professionals.

Skip, or overlook, the inquiry process, and we take chances.

Unaware of this essential procedural learning investment, you could spend years entering and being in the wrong career-choice, dissatisfied -- demanding change, but not knowing exactly what change you want and need.

As a learning disability teacher, clinical researcher-specialist, and parent of three, I had a continuous learning quest for a solution to make learning procedures easier not only for my students, but my own family members. Inquiringly, being heavily involved in rigorous university diagnostic and evaluative instruction at the University of Kansas Medical Center in Kansas City, I assessed not only my own family, but also, myself. The great Swiss cognitive psychologist, Jean Piaget, routinely used his own family members as research subjects.

Soon, many others followed suit, at a variety of age, ability, and demographic levels, wanting to take part in a low- cost research project. All sought change, and hopefully would reach higher potential levels. The objective was to find an easier way to rapidly learn, retain, and manage complex procedural information, and function at higher potential levels than they thought were even possible.

Although my work has been published repeatedly by a juried journal [7], evaluated by several independent research teams, with data followed longitudinally,[8] research designs may be questioned as designed with a biased framework, creating false positives. [9] Only longitudinal data trends, both experimental and criterion, will confirm any research findings. [10]

Early, Golden Age, Wooden Identity Images, Become Star Role Models

Multi-Dimensional puppetry face and sound bites can offer the answer with daily, a-few minutes- system, because they are calming yet stimulating. Through invigorating, focused engagement, you can find a valuable tool for continued personal, cognitive growth.

You then ask, “what if these characters remind me of scary ones I have seen earlier, or listened to, on horror podcasts?”

A well-documented, data-based, learning system has accepted the cubic facial, puppetry image action through solid stage, film, and technical-data, recorded history.

Fleeting, animated, or cloth images are another possibility to attract your attention. You might respond, “If instant, fast-moving, quick, images are the popular norm, both in reality and online, why would I want to engage in a system with different type of images that I am not used to seeing?” “And, would this unique alternating, interlinked visual and sound action, actually create credible cognitive change? “

A Tried-and-True Tool: Multi-Dimensional, Cubic, Sound Image Action

Our overall acceptance of any facial and sound copy is determined by the length of time they have been initially created, and then monitored by continual, documented, confirmations. You might like to enhance your procedural capability rapidly, with reliable visual and sound images.

Data Engineering, and Data Science Coupled with Choral Speaking, Linguistic Performance

It is unusual for a program developer, with a variety of highly developed talents, who engaged and trained a novice film-maker from scratch, who then created a viable working memory, solution by applying unique images and sounds.

Remarkably, I designed visual-auditory perceptual-coding exercises that were difficult for me, tailored to improve not only my own language shortcomings,[11] but prove a viable training entity for others.

To my great surprise, I would ultimately become the most valuable research subject of all. I found I could internally monitor my own cognitive weaknesses through daily observations, as I instructed with the comic puppets with rotating facial and frequency changes. And, I improved greatly. much to my happiness and relief.

Subsequently, I monitored the experimental working model progress, both internally and externally. [12] Internalized, mental processing relies on serial activity through Deep Learning Transfer. Experimental and criterion referenced measurements were critically applied and carefully monitored, with a variety of populations and data groups. As to be expected, outcomes (although most having positive effect sizes) varied according to individual circumstances. This ongoing development of pre-tuning and fine-tuning in metrics algorithms, of image and sound frequency models, created mental transfer that was continually measured over time. [13]

Only you can determine whether you want to maintain charge of your life, expand, try new growth vistas, or remain the same. And, take your chances of giving that control to someone else to decide your future.  

A necessary image and sound working memory solution, The Bridge to Achievement,[14] focuses on multiple word-diction, sound patterning, procedural learning, practice. Its’ training application is close to independent, team trials for 5th generation digital, film data monitoring.

Each of us has hidden potential that can expand our horizons, provided that you have the desire and willingness to explore and find it. Next blog: How and why it took two decades of a photographer search and continuing experimental film trials, to complete the necessary film work as applied research, for online personal upskill learning.



[1] Dobrzynski, J. H. (November 2021). “Portraits peopled with symbols”. Wall Street Journal, Arts in Review.  A15.

[2] Trafton, A. (November 15, 2021) “A key brain region responds to faces similarly in infants and adults.” MIT Center Brains, Minds, and Machines news release. Cambridge, MA

[4] Erland. J. K. (November 11, 2021).” Sequenced Details: Working Memory Expansion”. Jan’s Brainy Insight. Blogger.com.

[5] Rumelhart, D. E. McClelland, J. L. (1986). Parallel distributed processing: Explorations in the micro structure of cognition. Cambridge, MA: MIT Press.

[6] McClelland, J. L. Emergence in Cognitive Science. (September 2010). https://doi.org/10.1111/j.1756-8765.2010.01116. Topics in Cognitive Science 2 (2010) 751–770 Copyright  2010 Cognitive Science Society, Inc. All rights reserved. ISSN: 1756-8757 print / 1756-8765 online DOI: 10.1111/j.1756-8765.2010.01116.x

 [7] Erland, J. K. (©2008). Downloadable, unpublished report. Five Generations, 27-years of iterative Brain-Based Accelerative Learning Experimentation Demonstrate Cognitive Skill Improvement Enhances Academic and Career Goals. (https://memspan/jalt).

[8] Erland, J. K. (Fall 2000). Brain-Based Longitudinal Study Reveals Subsequent High Academic Achievement Gain for Low-Achieving, Low Cognitive Skills, Fourth Grade Students. Journal of Accelerated Learning and Teaching. 25, (3&4) pp.5-48. ERIC ED # 453-553. & # CS 510 558. https://Books.Google.com/jankuypererland page 41.

[9] Ioannidis, John P.A. (August 2005). Essay: Why Most Published Research Findings Are False. PLoS Medicine. 2, 8, e124.

[10] Erland, J. K. (2014). https://memexspan.com/outcomes. And,  https://memexspan.com/en/case-studies/initial-cohort Mem-ExSpan, Inc. Lawrence, KS.

[11] Catts, H.W., & Kamhi, A. G. (1986). The Linguistic Basis of Reading Disorders/ Language Speech and Hearing Services in Schools. 17 (4), 329. https://doi.org/10.1044/0161-1461.1704.329

[12] Erland, J. K. (Spring 1999). Brain-Based Learning Longitudinal Study Reveals Sold Academic Achievement Maintenance with Accelerated Learning Practice. Journal of Accelerated Learning and Teaching. 24, (1&2). pp. 1-33. (This journal closed in 2008) ERIC ED #436-962.

[13] Oriel, Astha. (September 18, 2020), Unraveling Deep Learning Algorithms with Limited Data. Insight News. https://www.Analyiticsinsight.net.

[14] Erland, J. K. (2021, 1994, 1991, 1086, 1985, 1981). The Bridge to Achievement Cognitive Training System. https://memexspan.com and https://memspan.com Lawrence, Kansas. Mem-ExSpan, Inc. 


Thursday, November 11, 2021

Sequenced Details: Working Memory Expansion - Your Best Mental Skill Created

Every moment of our day is rushed, serial. Each event becomes part of a singular-one-piece, holistic grid, creating unbearable tension, pressure, and stress.

Enveloped with daily fast driving, quick texting, constant, communicative blunders and demands, our thoughts become disrupted. We hurry, multi-task, resolve problems, issues; but, with a holistic, one-track mind. We remain fixated, less productive, in our daily routines.

Unwittingly, we create our own frantic, strange inner world that seldom interfaces with the outside hurried, demanding world. There is never enough time to enjoy life as we would like. Exhausted, we need and want some kind of relief.  Can a strategically trained mind, with sequential thought, become liberated, finding new, focused self-assurance,  even possible?            

Solution: We can upgrade ourselves to be a sharper, more autonomous, individual by applying strategic working memory training. [1] We can transition to a methodical mindset capability by applying detail awareness, through sequenced, chunked-coded, information. [2]  Series of step-wise operations require focused speed and accuracy. This will add not only proficiency to our tasks, but create a calm, methodical, mindset.

Thirty years ago, I wrote a similar, but technical article, on this same venue, [3]  and now sorely see the disastrous, dangerous, outcome of detail issues that are routine now, in all academic and professional fields.

Change Can and Should Begin Early

The best scenario is to begin sharp cognition enhancement early on. If young and teenage students become routinely aware of their own learning brain skill strengths and weaknesses, like athletes and musicians know their improvement goals, mental enhancement then becomes an habitual, ongoing process. [4]

The school learning process has always been a chicken/egg – ying/yang question as to why the student was not learning the content (lack of motivation, behavioral), or poor teaching (poor choice of lesson applications, or lack of class control). Subsequently, many children may wade through the academic process, unknowingly with cognitive shortcomings, and then, as adults, must create their own upward mobility through determination, insight, and courage through advanced education and training.  

And then, to find they have the same cognitive weaknesses that can further decline with age.

An old adage: “The Devil is in the Details”

You might say; “Why should I care about detail errors – I get paid anyway. Even double, with constant re-work.”

Yet, even with this faulty logic, steps can not be omitted, or the entire operational system fails. The end consumer pays. Mental, procedural skill abilities are now in high demand. We can interface with this demand, by showing awareness of, and then applying, good logical-sequential, solutions to avoid, or rapidly correct, these routine detail errors.

Understanding detail function is your  best career route, as supervisors notice your proficiency ;evel. And, you could spend years spinning your tires at low wages, job uncertainty, unnecessarily.

Working Memory Recognized and Understood
There are two primary memory and cognition processing types: visual and auditory-listening memory, (details and sequential). [5] Optimally, they should work in sync. Working in tandem cerates conceptualization, with understanding, and higher thought levels. There are sub-ordering categories within each type: words, letters, numbers, and sentences. [6] Subsequently, integrated visual and listening sequencing is the root of all academic and technical learning: following oral and written directions, reading writing, spelling and math.

Use it or Lose it with Continual Detail Workouts: Pills Will Not Create Sequences

 You can;
1) practice with the many existing, online, memory exercise routines like athletes and musicians do. But, they have their own specific practice drills, as they expect continued drill and practice as basics of their discipline, for excelling and maintaining performance edge.  

Or, 2) engage in a researched, data-evidenced, sequencing-skill building program, offering your own personal outcomes. You can use practice routines as a family, or within other group units.

A Numerical Practice Sample

Continued rehearsal practice can jump start your working memory for increased strength and capacity.  As a former “Mind and Brain - Vision” Kansas City chapter editor, and national contributor for the Association of Training and Development, (ASTD, Now, ATD, The Association for Development Talent), I wrote about the necessary skills of brain building through detail-sequencing: “Building a More Powerful Brain”. [7] All operational procedures, as in computer programming, technical skills, business management, or surgical routines, are a series of coded details and spans.

You may discover that keeping numerical figures straight, while listening to feedback instructions during data entry situations, is particularly difficult.  Additionally, many of us can not apply telephone numbers without looking.  We have most of the numbers we routinely use, entered into our cell phones. But, there may be non routine telephone numbers to enter at times. And, we generally look at them.

Okay then, let’s practice a few simple chunked number spans to improve our numerical sequencing.  Have someone read the number series to you, so you do not see the text.  Since telephone numbers are easy seven spans, try saying a few both forward and in reverse.  Scanning backward will help you visualize the numerical placement to avoid transposing. Then say it forward again. You can find many similar online practice games like this example.

Say this number series:  932-4737

Now in reverse:  7374-239

Repeat the correct number series forward:  932-4737

Here are two more.  Now, you can create your own as you drive home or to work:

1)          832-4787
    7874-238
    832-4787                                 


2)         239-5782
   2875-932
   239-5782 
        


You can now start developing your own sequencing skill, working memory, with continued practice. Mental toughness improvement can also soon be achieved through Mem-ExSpan’s short, online, practice sessions applying puppetry, comedy, acting, and music.   

Mental skill sequencing awareness and change gives ultimate job and career-choices for autonomous, life-long, personal freedom.

Jan Kuyper Erland, is a Performance Analyst, Content Development Researcher, and Intervention Specialist for Mem-ExSpan, Inc. 



[1] Erland, J. K. (1999). Retraining cognitive abilities: A longitudinal study. Journal for Accelerated Learning and Teaching, 14. 1. 3-42. (ERIC ED #436 962).

[2]  Erland, J. K. (c 1989). Hierarchy of Thinking. Mem-ExSpan, Inc.

[3]  Erland, J. K. (1992). Cognitive skills training improves listening and visual memory for academic and career success. Journal of Accelerated Learning and Teaching. 20. 1. ERIC Clearinghouse (ED #353 286).

[4] Erland, J. K. (© 2008). unpublished document. Five Generations, 27-years of Iterative Brain-Based Accelerative Learning Experimentation, Demonstrate Cognitive Skill Improvement Enhances Academic Achievement and Career Goals.
(https://www.memspan/jalt)

[5] Guilford, J. P. (1986). Creative talents: Their nature, uses, and development. Buffalo, NY: Bearly Ltd.

[6] Woodcock, R. W. & Johnson, M. (3rd ed. 2001, 1989, 1977). Tests of Cognitive Ability: Psycho educational battery. Hingham, MA: Teaching Resources Corp. Standard and Supplemental Batteries Examiner’s Manual. Allen, TX. DLM. 

[7] Erland, J. K. (Winter 1998-1999). Building a More Powerful Brain. Performance in Practice. ASTD. pp.13-14. (ERIC ED #439 445).

Saturday, September 18, 2021

When Things Get Tough, Blossom through a Flexible, Creative Mindset

 

In an overly difficult world we now live in, we need to move forward with empathy and understanding for each other, blooming with a flexible mindset. Tough times, like a pandemic, can overwhelm, even painfully gripping, the most devoted, talented parent/educator with student instructional demands that should reveal positive improvement outcomes.

Having taught many puppetry workshops in the Kansas City area, it became my open door to the creativity process. You might consider applying creative puppetry to your classes as a learning tool. There are many online examples and options.

Accessing your own talents is your open doorway to connecting with learners positively, happily, and reach self-actualization in the process. But, you might ask – how can I do this? It does take time and patience, but I can relate my unusual story, as an example of making worthy progress in bettering lives.

Creating and Realizing Your Inner Mindset

A mindset takes inner resolve of taking action through mental planning. Many teachers and parents feel they have enough to do with student/classroom management without trying to figure out new, creative activities, or wade through the best online applications for every subject. It simply is not their bag when their hands are full enough. There can be simply too many hourly demands. Now, you can decide to expand your mind to energize your own inner resolution that will give you endless hope joy, and peace of mind.

Jump Into Action Tips

1. Spring your own ideas from inspiring, moving, reading/media material.

2. Follow your own inner intuition, rather than including outside influences, to create your personalized mindset. Agreeing with others’ comments, opinions, or criticisms will affect your own creative process. Competing derails your own originality.

3. Use trial and error. Experiment, and then adjust as needed on following days. Have fun with different variations. Make it your own game plan.

4. Build and elevate. Subsequently, your creativity will build more and more, bit by bit, just like mine did into a crescendo, for a new, fluid, mindset.

How Did I Develop a Creative Mindset?     

As a first year teacher, I had a forward looking, enthusiastic, mindset graduating from college early, ready to teach, and create a positive, happy, day for eager learners. Taking a second grade position, with a wide variety of disabilities in my own generational background, I knew that I wanted to address each child independently with as much undivided time and attention as I could possibly muster. Subsequently, I soon had five individual reading groups at different levels for several years in the teaching profession.

For my student teaching practicums, I had understudied with an amazingly creative veteran first grade teacher who taught through poetry. Then, I also did practice teaching the following semester with a traditional, second grade veteran. I hated every minute of it, and decided then and there I would apply art and science methodologies that included music, drama, story- telling, and poetry that I was highly proficient in. The days would brighten. But, I was not certain how I would do it, as diverting from “old school” teaching methods was not the norm.

Accessing my music-speech-drama-science-literature studies background, I began designing special activities to encompass a large variety of learning levels and abilities. Nonetheless, I soon found myself with a school principal that welcomed creativity in a progressive school district. Students applied reading, spelling, language and math learning into writing poetry, songs and dramatic plays. This progressed to combining all subject matter into one dramatic musical episode for parents, teachers, and admin. Soon, I became recognized for giving end-of-semester auditorium performances.

As a family also enjoying books, poetry, music, and science, we soon created a charming puppet play with a home-made stage and hand puppets, for a summer church school event.

An enthusiastic church troupe formed, and we toured nursing homes, facilities for those with special needs, and offered public grade school musical events. Elderly, disabled, patrons often waited an hour in anticipation of our amusing “Teddy Bears’ Picnic” puppet show. 

Meeting a Wood-Carving Puppeteer Strapped in Performance History

While touring with the clever “The Teddy Bear’s Picnic”, I was asked if I had met the local puppeteer, Foy Brown, whose livelihood was a fireman who carved ventriloquist puppets in off moments. He had grown up with a father who traveled nationally to the New York stage, as an entertainer and wood carver at the turn of the 20th century.

Foy Brown lived near our high school.  Enchanted with this history, I purchased the first two puppets. Enjoying his ongoing carving process, I made another upcoming purchase, “Professor Do Little Higgins”.

Foy introduced me to another nationally recognized, vaudeville/Hollywood stage performer, Lucile Elmore, who sold Lily La Teur to me. This created the puppet ensemble necessary to create our “Voco Poco Puppets” advertising productions.

Foy’s and her enthusiasm had become contagious for my family of three children who wrote the scripts, created costumes, lighting, and set designs, as done earlier. We now had three large ventriloquist wooden puppets that sang and had silly, comeuppance story lines, accompanied by my 12-year old son playing the electric piano. Soon, we found ourselves as a big show stopper with advertising demands for the then trendy shopping malls and department stores, for every holiday imaginable.

We gathered large crowds of hundreds enjoying our unique ventriloquist puppets. Noticing that the puppets caught fixated attention, I began wondering if they might be good role models for my teaching with special needs children, as a learning disability teacher.

Lucile attended our productions and was enthralled with our family show.  I enjoyed her ventriloquism lessons with my ongoing vocal studies. When she passed away, I sat behind her attorney at her funeral. He was with a little ventriloquist wooden, Hollywood studio-made puppet, a red-haired, little boy, stage-named Butch O’Malley. Surprisingly, she had bequeathed me Butch, of her early Hollywood 1930s, stage show tours.

When the attorney presented Butch, he announced, “Lucille knew you would do something important with him, and would prevent his storage in a box lost in a museum (that did happen with many of the early puppeteer performers’ stage puppets, props). I was not only astounded, but deeply touched. 

My classroom teaching segwayed into research projects with small, homogonous, group instruction in a home studio. This created my own research and content development company, Mem-ExSpan, Inc. The cognitive skills research and practice work indicated that the lessons required filming for scalable, sustainable, expansion. The Voco Poco Puppets family team created the initial home-filmed lesson segments for test site application, decades ago. Updated filming became paramount, now a reality.

Thirteen national test sites were set up through research and low cost availability. In-depth individualized, standardized cognitive and academic assessments formed remarkably large data pools. This in-depth assessment, evaluations, and data analyses for a wide wage of ages and demographic groups explained the extraordinary, novel methodology. Participants were pleased as they obtained unusual, yet visibly apparent, assessment and outcome results in a short period of time at low cost. Thousands benefited and blossomed.

Throughout this endeavor, I remained in scholarly class work at the University of Kansas, a nearby campus.  Applied research in a variety of settings, was my noteworthy, enwrapped focus.  Testing company executives, the Educational Testing Service (ETS) in Princeton, NJ, and professors, doctoral students, from five different universities joined and worked on the pre-digital data outcomes. I wrote scientific articles that were submitted to journals, juried, published, and eventually received awards as landmark research having completed 5 longitudinal research reports.

This is my story, as to how a flexible mind set created inspirational, lasting, teaching methods, now completed. Never give up. Give it a try and see. What will your self- empowerment story be?

Monday, February 13, 2017

"Cracking Math and Science"

Why Students May Not Perform Well in Science and Math

Unfortunately, there is a reason learners may not progress in science and math as expected. Many do not have enough underlying memory capacity to learn the varied sequential information and then apply it logically.

Furthermore, assuming this, students are unable to understand and follow procedural instructions basic to conceptualizing mathematical and scientific information.

Why is this?

Numerical arithmetic is taught in grades one to three, and there is a major shift in the curriculum in grade four. Right-brain spatial numbers shift into left-brain sequencing with advanced concepts. National test scores show that math scores, including advanced concepts, drop off  beginning in grade four.

Understanding science requires not only doing simple experiments and reading scientific stories out of textbooks, but requires procedural, stepwise learning.

Procedural learning requires the mastery of learning step-wise procedures. Following directions is usually taught with simple question and answer digital question/answer assignments taught by animated characters that may speak and move too quickly for the necessary absorption needed.

Why do we fall behind other foreign countries -- how can these children encode-decode information while ours do not? Perhaps their students have more musical training and learn foreign languages that train auditory (listening) memory, critically needed for learning technical sequences.

What is missing?

Students may be unable to listen to complex instructions (teachers spend hours daily repeating directions continuously). Subsequently, students work in teams where one member does the application "thinking" and fills out the required responses on devices. Others work in small tutorial groups with simple assignments that can be below grade level work. These students may then "fall through the cracks" with their math instruction and output.

Every student processes information differently, with different learning styles and capacities. The missing link is teaching students how to encode and decode sequential information with "mental toughess training", and expand their visual and listening memories an underlying requirement for conceptualizing formulas and mathematical equations.

Yet, teachers do recognize each child's proficiency level in math and science. Unfortunately, completion demands may be placed upon students who naturally lack the necessary "brain-power" to sequence and code math and science instructions.

Yet, we need to understand and expand our technological capacities with performing students in science and math.

Parents can now help fill in this gap - the missing link. There soon will be more parent "how to" information readily accessible through digital learning. Applications will be pleasurable, scientifically tested, and learning will be fast.

The ability to encode/decode sequential information will be taught through specific, scientifically tested training regimens. It might be something for all of us to consider. Let's look to future, innovative possibilities to foster advanced learning in science and math.